Documentation

Bdd.Nary

@[reducible, inline]
abbrev Nary.Func (n : ) (α : Type u_1) (β : Sort u_2) :
Sort (imax (u_1 + 1) u_2)
Equations
Instances For
    def Nary.IndependentOf {n : } {α : Type u_1} {β : Sort u_2} (f : Func n α β) (i : Fin n) :

    IndependentOf f i if the output of f does not depend on the value of the ith input.

    Equations
    Instances For
      def Nary.DependsOn {n : } {α : Type u_1} {β : Sort u_2} (f : Func n α β) (i : Fin n) :

      DependsOn f i if the output of f depends on the value of the ith input.

      Equations
      Instances For
        def Nary.Dependency {n : } {α : Type u_1} {β : Sort u_2} (f : Func n α β) :

        The type of indices that a given function depends on.

        Equations
        Instances For
          theorem Nary.eq_of_forall_dependency_getElem_eq {n : } {α : Type u_1} {β : Sort u_2} {f : Func n α β} {I J : Vector α n} :
          (∀ (x : Dependency f), I[x] = J[x])f I = f J
          def Nary.restrict {n : } {α : Type u_1} {β : Sort u_2} (f : Func n α β) :
          αFin nFunc n α β
          Equations
          Instances For
            @[simp]
            theorem Nary.restrict_const {β✝ : Sort u_1} {b : β✝} {α✝ : Type u_2} {c : α✝} {n✝ : } {i : Fin n✝} :
            restrict (Function.const (Vector α✝ n✝) b) c i = Function.const (Vector α✝ n✝) b
            theorem Nary.restrict_independentOf {n✝ : } {α✝ : Type u_1} {β✝ : Sort u_2} {f : Func n✝ α✝ β✝} {c : α✝} {i : Fin n✝} :